Danh mục bài soạn

CHƯƠNG 1: CĂN BẬC HAI. CĂN BẬC BA

CHƯƠNG 1: HÊ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG

CHƯƠNG 2: ĐƯỜNG TRÒN

CHƯƠNG 2: HÀM SỐ BẬC NHẤT

Soạn toán 9 bài 3: Liên hệ giữa phép nhân với phép khai phương Trang 12 16

Chuyên mục: : Soạn toán 9 tập 1

Đây là kiến thức mới trong chương trình lớp 9 .Và để giúp các bạn làm quen cũng như nắm chắc nội dung bài học , Hocthoi xin giới thiệu những bài học bổ ích nhất theo chương trình cơ bản .Hi vọng sẽ là nguồn tài liệu tham khảo hữu ích!

A. Tổng hợp lý thuyết

I.  Định lí 

ĐỊNH LÍ 

  • Với hai số a , b không âm , ta có : $\sqrt{a.b}=\sqrt{a}.\sqrt{b}$

II.  Áp dụng

1.  Quy tắc khai phương một tích

Muốn khai phương một tích của các số không âm , ta có thể khai phương từng thừa số rồi nhân các kết quả với nhau .

2.  Quy tắc nhân các căn bậc hai

Muốn nhân các căn bậc hai của các số không âm , ta có thể nhân các số dưới dấu căn với nhau rồi khai phương kết quả đó .

Tổng quát :

  • Với hai biểu thức A , B không âm , ta có : $\sqrt{A.B}=\sqrt{A}.\sqrt{B}$
  • Đặc biệt , với biểu thức không âm A , ta có : $(\sqrt{A})^{2}=\sqrt{A^{2}}=A$

 

Giải đáp câu hỏi và bài tập

Câu 17: Trang 14 - sgk toán 9 tập 1

Áp dụng quy tắc khai phương một tích , hãy tính :

a.  $\sqrt{0,09.64}$

b.  $\sqrt{2^{4}.(-7)^{2}}$

c.  $\sqrt{12,1.360}$

d.  $\sqrt{2^{2}.3^{4}}$

Câu 19: Trang 15 - sgk toán 9 tập 1

Rút gọn các biểu thức sau :

a.  $\sqrt{0,36a^{2}}(a<0)$

b.  $\sqrt{a^{4}(3-a)^{2}}(a\geq 3)$

c.  $\sqrt{27.48(1-a)^{2}}(a>1)$

d.  $\frac{1}{a-b}\sqrt{a^{4}(a-b)^{2}}(a>b)$

Câu 18: Trang 14 - sgk toán 9 tập 1

Áp dụng quy tắc nhân các căn bậc hai , hãy tính :

a.  $\sqrt{7}.\sqrt{63}$

b.  $\sqrt{2,5}.\sqrt{30}.\sqrt{48}$

c.  $\sqrt{0,4}.\sqrt{6,4}$

d.  $\sqrt{2,7}.\sqrt{5}.\sqrt{1,5}$

Câu 20: Trang 15 - sgk toán 9 tập 1

Rút gọn các biểu thức sau :

a.  $\sqrt{\frac{2a}{3}}.\sqrt{\frac{3a}{8}} (a\geq 0)$

b.  $\sqrt{13a}.\sqrt{\frac{52}{a}} (a> 0)$

c.  $\sqrt{5a}.\sqrt{45a}-3a (a \geq 0)$

d.  $(3-a)^{2}-\sqrt{0,2}.\sqrt{180a^{2}}$

Câu 21: Trang 15 - sgk toán 9 tập 1 

Khai phương tích 12 . 30 . 40 được :

A.  1200

B.  120

C.  12

D.  240

Câu 22: Trang 15 - sgk toán 9 tập 1

Biến đổi các biểu thức dưới dấu căn thành dạng tích rồi tính :

a.  $\sqrt{13^{2}-12^{2}}$

b.  $\sqrt{17^{2}-8^{2}}$

c.  $\sqrt{117^{2}-108^{2}}$

d.  $\sqrt{313^{2}-312^{2}}$

Câu 23: Trang 15 - sgk toán 9 tập 1

Chứng minh :

a.  $(2+\sqrt{3})(2-\sqrt{3})=1$

b.  $\sqrt{2006}-\sqrt{2005}$ và $\sqrt{2006}+\sqrt{2005}$ là hai số nghịch đảo của nhau .

Câu 24: Trang 15 - sgk toán 9 tập 1

Rút gọn và tìm giá trị ( làm tròn đến chữ số thập phân thứ ba ) của các căn thức sau :

a.  $\sqrt{4.(1+6x+9x^{2})^{2}}$ tại $x=-\sqrt{2}$

b.  $\sqrt{9a^{2}(b^{2}+4-4b)}$ tại $a=-2,b=-\sqrt{3}$

Câu 25: Trang 16 - sgk toán 9 tập 1

Tìm x , biết :

a.  $\sqrt{16x}=8$

b.  $\sqrt{4x}=\sqrt{5}$

c.  $\sqrt{9(x-1)}=21$

d.  $\sqrt{4(x-1)^{2}}-6=0$

Câu 26: Trang 16 - sgk toán 9 tập 1

a.  So sánh $\sqrt{25+9}$ và $\sqrt{25}+\sqrt{9}$ .

b.  Với a > 0 , b > 0 , chứng minh $\sqrt{a+b}<\sqrt{a}+\sqrt{b}$ .

Câu 27: Trang 16 - sgk toán 9 tập 1

So sánh :

a.  4 và $2\sqrt{3}$

b.  $-\sqrt{5}$ và -2

Phần trên, hocthoi.net đã soạn đầy đủ lý thuyết và bài tập của bài học: Soạn toán 9 bài 3: Liên hệ giữa phép nhân với phép khai phương Trang 12 16 . Bài học nằm trong chuyên mục: Soạn toán 9 tập 1. Phần trình bày do Nguyễn Linh chủ biên. Nếu có bài tập nào chưa rõ, có phần nào muốn hiểu rộng thêm, bạn đọc vui lòng comment bên dưới. Ban biên tập sẽ giải đáp giúp các bạn trong thời gian sớm nhất.

Bài soạn các môn khác

Bình luận