Soạn giải tích 12 bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số

Ở các lớp dưới, chúng ta đã biết được cách tìm GTLN và GTNN của hàm số thông qua một số bất đẳng thức quen thuộc như Bunhiacopski, Cauchy... Bài hôm nay, chúng ta được học thêm một phương pháp nữa để tìm GTLN và GTNN của hàm số đó là nhờ vào một ứng dụng quan trọng của đạo hàm hàm số.

A. Lí thuyết

1. Định nghĩa

Cho hàm số $y=f(x)$ xác định trên tập D.

  • Số M được gọi là giá trị lớn nhất của hàm số $y=f(x)$ trên tập D nếu $f(x) \leq M$ với mọi x thuộc D và tồn tại $x_{0} \in D$ sao cho $f(x_{0}=M$. Kí hiệu $M=\max_{D} f(x)$.
  • Số m được gọi là giá trị nhỏ nhất của hàm số $y=f(x)$ trên tập D nếu $f(x) \geq m$ với mọi x thuộc D và tồn tại $x_{0} \in D$ sao cho $f(x_{0}=m$. Kí hiệu $m=\min_{D} f(x)$.

2. Cách tính GTLN và GTNN của hàm số trên một đoạn

Định lí: Mọi hàm số liên tục trên một đoạn đều có giá trị lớn nhất và giá trị nhỏ nhất trên đoạn đó.

Quy tắc tìm GTLN và GTNN của hàm số liên tục trên một đoạn

  1. Tìm các điểm $x_{1}, x_{2},...,x_{n}$ trên khoảng (a,b) tại đó $f'(x)=0$ hoặc $f'(x)$ không xác định.
  2. Tính $f(a), f(x_{1}), f(x_{2}),..., f(x_{n}),f(b)$.
  3. Tìm số lớn nhất M và số nhỏ nhất m trong các số trên. Ta có $M=\max_{[a,b]}f(x), m=\min_{[a,b]}f(x)$.

Tổng quát: Muốn tìm GTLN và GTNN của một hàm số trên TXĐ.

  • Bước 1: Tìm TXĐ
  • Bước 2: Giải phương trình $f'(x)=0$
  • Bước 3: Lập bảng biến thiên
  • Bước 4: Dựa vào bảng biến thiên đưa ra kết luận.

Ví dụ: Tìm GTLN và GTNN của hàm số $$y=x-5+\frac{1}{x}$$ trên khoảng $(0,+\infty)$.

Giải: TXĐ $D=(0,+\infty)$.

Ta có $y'=1-\frac{1}{x^{2}}=\frac{x^{2}-1}{x^{2}}=0\Leftrightarrow x=1$.

Bảng biến thiên

Từ bảng biến thiên ta thấy trên khoảng $(0,+\infty)$, hàm số đạt GTNN là -3 khi x=1 và không tồn tại giá trị lớn nhất của f(x) trên khoảng $(0,+\infty)$.

Giải đáp câu hỏi và bài tập

Bài 1: Trang 23, 24 - sgk giải tích 12

Tính giá trị lớn nhất, giá trị nhỏ nhất của hàm số

a) $y=x^{3}-3x^{2}-9x+35$ trên các đoạn $[-4;4]$ và $[0;5]$;

b) $y=x^{4}-3x^{2}+2$ trên các đoạn $[0;3]$ và $[2;5]$;

c) $y=\frac{2-x}{1-x}$ trên các đoạn $[2;4]$ và $[-3;-2]$;

d) $y=\sqrt{5-4x}$ trên đoạn $[-1;1]$.

Bài 2: Trang 24  - sgk giải tích 12

Trong các hình chữ nhật có cùng chu vi 16 cm, hãy tìm hình chữ nhật có diện tích lớn nhất.

Bài 3: Trang 24 - sgk giải tích 12

Trong tất cả các hình chữ nhật cùng có diện tích $48 m^{2}$, hãy xác định hình chữ nhật có chu vi nhỏ nhất.

Bài 4: Trang 24 - sgk giải tích 12

Tính giá trị lớn nhất của các hàm số sau:

a) $y=\frac{4}{1+x^{2}}$;

b) $y=4x^{3}-3x^{4}$.

Bài 5: Trang 24 - sgk giải tích 12

Tính giá trị nhỏ nhất của các hàm số sau:

a) $y=|x|$;

b) $y=x+\frac{4}{x}$. (x>0)

Phần trên, hocthoi.net đã soạn đầy đủ lý thuyết và bài tập của bài học: Soạn giải tích 12 bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số . Bài học nằm trong chuyên mục: Soạn giải tích lớp 12. Phần trình bày do Nguyễn Huyền tổng hợp và thực hiện giải bài. Nếu có chỗ nào chưa rõ, có phần nào muốn hiểu rộng thêm, bạn đọc vui lòng comment bên dưới. Ban biên tập sẽ giải đáp giúp các bạn trong thời gian sớm nhất.

Bài soạn các môn khác

Bình luận