Soạn giải tích 12 bài 4: Đường tiệm cận

Chuyên mục: : Soạn giải tích lớp 12

Toán học kể cho ta ba câu chuyện tình buồn. Câu chuyện thứ nhất về hai đường thẳng song song chúng luôn nhìn thấy nhau nhưng không bao giờ có thể gặp được nhau. Câu chuyện thứ hai về hai đường thẳng cắt nhau rằng họ chỉ có thể gặp nhau một lần để rồi xa nhau mãi mãi. Và cuối cùng là câu chuyện của hai đường tiệm cận họ chỉ có thể càng đi càng gần nhau nhưng lại không bao giờ có điểm chung.

A. Lí thuyết

I. Đường tiệm cận ngang

Định nghĩa: Cho hàm số y=f(x) xác định trên một khoảng vô hạn (là khoảng dạng $(a,+\infty), (-\infty;b), (-\infty, +\infty))$. Đường thẳng $y=y_{0}$ là đường tiệm cận ngang của đồ thị hàm số $y=f(x)$ nếu ít nhất một trong các điều kiện sau được thỏa mãn

  • $\lim_{x \to +\infty} f(x)=y_{0}$
  • $\lim_{x \to -\infty} f(x)=y_{0}$.

Ví dụ: Cho hàm số $f(x)=\frac{1}{\sqrt{x}}+1$ xác định trên khoảng $(0,+\infty)$.

Đồ thị hàm số có tiệm cận ngang $y=1$ vì $\lim_{x \to +\infty}f(x)=\lim_{x \to +\infty}(\frac{1}{\sqrt{x}}+1)=1$

II. Đường tiệm cận đứng

Định nghĩa: Đường thẳng $x=x_{0}$ được gọi là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số $y=f(x)$ nếu ít nhất một trong các điều kiện sau được thỏa mãn

  • $\lim_{x \to x_{0}^{+}}f(x)=+\infty$
  • $\lim_{x \to x_{0}^{-}}f(x)=-\infty$
  • $\lim_{x \to x_{0}^{+}}f(x)=-\infty$
  • $\lim_{x \to x_{0}^{-}}f(x)=+\infty$

Ví dụ: Tìm các tiệm cận đứng và ngang của đồ thị (C) của hàm số $$y=\frac{x-1}{x+2}.$$

Giải: Vì $\lim_{x \to -2^{+}}\frac{x-1}{x+2}=-\infty$ nên đường thẳng $x=-2$ là tiệm cận đứng của (C).

Vì $\lim_{x \to \pm \infty}\frac{x-1}{x+2}=1$ nên đường thẳng y=1 là tiệm cận ngang của (C). 

Giải đáp câu hỏi và bài tập

Bài 1: Trang 30 - sgk giải tích 12

Tìm các tiệm cận của đồ thị hàm số

a) $y=\frac{x}{2-x}$;

b) $y=\frac{-x+7}{x+1}$;

c) $y=\frac{2x-5}{5x-2}$;

d) $y=\frac{7}{x}-1$.

Bài 2: Trang 30 sgk giải tích 12

Tìm các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số

a) $y=\frac{2-x}{9-x^{2}}$;

b) $y=\frac{x^{2}+x+1}{3-2x-5x^{2}}$;

c) $y=\frac{x^{2}-3x+2}{x+1}$;

d) $y=\frac{\sqrt{x}+1}{\sqrt{x}-1}$.

Phần trên, hocthoi.net đã soạn đầy đủ lý thuyết và bài tập của bài học: Soạn giải tích 12 bài 4: Đường tiệm cận . Bài học nằm trong chuyên mục: Soạn giải tích lớp 12. Phần trình bày do Nguyễn Huyền chủ biên. Nếu có bài tập nào chưa rõ, có phần nào muốn hiểu rộng thêm, bạn đọc vui lòng comment bên dưới. Ban biên tập sẽ giải đáp giúp các bạn trong thời gian sớm nhất.

Bài soạn các môn khác

Bình luận