Soạn giải tích 12 bài 1: Số phức

Mở đầu chương 4 với bài học: Số phức. Một kiến thức mới nhưng không khó, đòi hỏi các bạn học sinh cần nắm được lý thuyết để vận dụng giải quyết các bài toán. Dựa vào cấu trúc SGK toán lớp 12, Hocthoi sẽ tóm tắt lại hệ thống lý thuyết và hướng dẫn giải các bài tập 1 cách chi tiết, dễ hiểu. Hi vọng rằng, đây sẽ là tài liệu hữu ích giúp các em học tập tốt hơn

A. Tổng hợp kiến thức

1. Số $i$

  • Số $i$ là tập số mở rộng của tập hợp số thực.
$i^{2}=-1$

2. Số phức

  • Mỗi biểu thức dạng $a+bi$, ( $a,b \in R,i^{2}=-1$ ) là một số phức.
  • $a$ gọi là phần thực của số phức $a+bi$.
  • $b$ gọi là phần ảo của số phức $a+bi$.
  • Ký hiệu tập số phức: $C$

3. Số phức bằng nhau

  • Hai số phức bằng nhau nếu phần thực và phần ảo của chúng tương ứng bằng nhau.
$a+bi=c+di<=> a=c , b=d$

Chú ý:

  • Mỗi số thực được coi là một số phức với phần ảo $b=0$.
  • $a=a+0i$
  • Số phức $0+bi$ được gọi là số ảo .
  • Số $i$ gọi là đơn vị ảo.

$bi=0+bi$

$i=0+1i$

4. Biểu diễn hình học số phức

  • Điểm M(a;b) trong một hệ tọa độ vuông góc của mặt phẳng được gọi là điểm biểu diễn số phức $z=a+bi$.

Ví dụ minh họa

 Số phức

  • Điểm A(3;2) biểu diễn số phức $z=3+2i$.
  • Điểm B(2;-3) biểu diễn số phức $z=2-3i$.
  • Điểm C(-3;-2) biểu diễn số phức $z=-3-2i$.
  • Điểm D(0;3) biểu diễn số phức $z=3i$.  ( đây là số ảo )

5. Môđun của số phức

  • Môđun của số phức $z=a+bi$ được biểu diễn bởi điểm M(a;b) là độ dài vectơ $\overrightarrow{OM}$.
  • Ký hiệu: $\left | z \right |$
$\left | z \right |=\left | a+bi \right |=\sqrt{a^{2}+b^{2}}$

6. Số phức liên hợp

  • Cho số phức $z=a+bi$ => $z=a-bi$ gọi là số phức liên hợp của $z$.
  • Ký hiệu: $\overline{z}=a-bi$

Đặc biệt:

$\overline{\overline{z}}=z$

$\left | \overline{z} \right |=\left | z \right |$

Giải đáp câu hỏi và bài tập

Bài tập 1:Trang 133-sgk giải tích 12

Tính phần thực phần ảo của số phức x, biết:

a) $z=1-\prod i$

b) $z=\sqrt{2}-i$

c) $z=2\sqrt{2}$

d) $z=-7i$

Bài tập 2:Trang 133-sgk giải tích 12

Tìm các số thực x và y, biết:

a) $(3x-2)+(2y+1)i=(x+1)-(y-5)i$

b) $(1-2x)-i \sqrt{3}=\sqrt{5}+(1-3y)i$

c) $(2x+y)+(2y-x)i=(x-2y+3)+(y+2x+1)i$

Bài tập 3:Trang 134-sgk giải tích 12

Trên mặt phẳng tọa độ tìm tập hợp điểm biểu diễn các số phức z thỏa mãn điều kiện:

a) Phần thực của z bẳng -2.

b) Phần ảo của z bẳng 3.

c) Phần thực của z thuộc đoạn [-1;2].

d) Phần ảo của z thuộc đoạn {1;3}.

e) Phần thực và phần ảo đều thuộc đoạn {-2; 2}.

Bài tập 4:Trang 134-sgk giải tích 12

Tính $\left | z \right |$, với:

a) $z=-2+i\sqrt{3}$

b) $z=\sqrt{2}-3i$

c) $z=-5$

d) $z=-i\sqrt{3}$

Bài tập 5:Trang 134-sgk giải tích 12

Trên mặt phẳng tọa độ, tìm tập hợp điểm biểu diễn các số phức z thỏa mãn từng điều kiện:

a) $\left | z \right |=1$

b) $\left | z \right |\leq1$

c) $1<\left | z \right |\leq2$

d) $\left | z \right |=1$ và phần ảo của $z=1$

Bài tập 6:Trang 134-sgk giải tích 12

Tìm $\overline{z}$, biết:

a) $z=1-i\sqrt{2}$

b) $z=-\sqrt{2}+i\sqrt{2}$

c) $z=5$

d) $z=7i$

Phần trên, hocthoi.net đã soạn đầy đủ lý thuyết và bài tập của bài học: Soạn giải tích 12 bài 1: Số phức . Bài học nằm trong chuyên mục: Soạn giải tích lớp 12. Phần trình bày do Nguyễn Linh tổng hợp và thực hiện giải bài. Nếu có chỗ nào chưa rõ, có phần nào muốn hiểu rộng thêm, bạn đọc vui lòng comment bên dưới. Ban biên tập sẽ giải đáp giúp các bạn trong thời gian sớm nhất.

Bài soạn các môn khác

Bình luận