Soạn giải tích 12 bài 2: Cực trị của hàm số

Chuyên mục: : Soạn giải tích lớp 12

Đây là nội dung khá quan trọng trong chương này, học sinh thường rất hay nhầm lẫn giữa khái niệm cực đại, cực tiểu với khái niệm giá trị lớn nhất và giá trị nhỏ nhất của hàm số.

A. Lí thuyết

I. Khái niệm cực đại, cực tiểu

Định nghĩa: Cho hàm số y=f(x) xác định và liên tục trên khoảng (a,b) (có thể a là $-\infty$, b là $+\infty$) và điểm $x_{0} \in (a,b)$

  • Nếu tồn tại số h>0 sao cho $f(x) <f(x_{0})$ với mọi $x \in (x_{0}-h, x_{0}+h)$ và $x \neq x_{0}$ thì ta nói hàm số f(x) đạt cực đại tại $x_{0}$.
  • Nếu tồn tại số h>0 sao cho $f(x) >f(x_{0})$ với mọi $x \in (x_{0}-h, x_{0}+h)$ và $x \neq x_{0}$ thì ta nói hàm số f(x) đạt cực tiểu tại $x_{0}$.

Chú ý:

1. Nếu hàm số f(x) đạt cực đại (cực tiểu) tại $x_{0}$ thì

  • $x_{0}$ được gọi là điểm cực đại (điểm cực tiểu) của hàm số
  • $f(x_{0})$ được gọi là giá trị cực đại (giá trị cực tiểu) của hàm số.
  • $M(x_{0},f(x_{0}))$ được gọi là điểm cực đại (điểm cực tiểu) của đồ thị hàm số.

2. Các điểm cực đại và cực tiểu được gọi chung là điểm cực trị. Giá trị cực đại (giá trị cực tiểu) còn gọi là cực đại (cực tiểu) được gọi chung là cực trị của hàm số.

3. Nếu y=f(x) có đạo hàm trên khoảng (a,b) và đạt cực đại hoặc cực tiểu tại $x_{0}$ thì $f'(x_{0})=0$.

II. Điều kiện đủ để hàm số có cực trị

III. Quy tắc tìm cực trị

Cách 1: 

  • Bước 1: Tìm tập xác định.
  • Bước 2: Tính f'(x). Tìm các điểm tại đó $f'(x)=0$ hoặc $f'(x)$ không xác định.
  • Bước 3: Lập bảng biến thiên.
  • Bước 4: Từ bảng biến thiên suy ra các điểm cực trị.

Cách 2:

  • Bước 1: Tìm tập xác định.
  • Bước 2: Tính $f'(x)$. Giải phương trình $f'(x)=0$ và kí hiệu $x_{i}$ (i=1,2,...,n) là các nghiệm của nó.
  • Bước 3: Tính $f''(x)$ và $f''(x_{i})$.
  • Bước 4: Dựa vào dấu của $f''(x_{i})$ suy ra tính cực trị của điểm $x_{i}$

Cụ thể $f''(x_{i}>0$ thì $x_{i}$ là điểm cực tiểu và $f''(x_{i})<0$ thì $x_{i}$ là điểm cực đại.

Ví dụ: Tìm cực trị của hàm số $$f(x)=\frac{x^{4}}{4}-2x^{2}+6.$$

Giải: TXĐ: $D=\mathbb{R}$

Ta có $y'=x^{3}-4x=x(x^{2}-4) \Rightarrow f'(x)=0\Leftrightarrow \left[ \matrix{x=0 \hfill \cr x=-2 \hfill \cr x=-2 \hfill \cr} \right.$

Cách 1: 

Bảng biến thiên

Vậy hàm số y=f(x) đạt cực tiểu tại $x=-2$ và $x=2$ ; $f_{CT}=f(\pm 2)=2$.

Hàm số y=f(x) đạt cực đại tại $x=0$ và $f_{CĐ}=f(0)=6$.

Cách 2: Ta có $f''(x)=3x^{2}-4$

$f(\pm 2)=8>0$ nên x=-2 và x=2 là hai điểm cực tiểu.

$f''(0)=-4<0$ nên x=0 là điểm cực đại.

Vậy hàm số y=f(x) đạt cực tiểu tại $x=-2$ và $x=2$ ; $f_{CT}=f(\pm 2)=2$.

Hàm số y=f(x) đạt cực đại tại $x=0$ và $f_{CĐ}=f(0)=6$.

Chú ý: Hàm số đạt cực đại tại x=0 và $f_{CĐ}=f(0)=6$ tuy nhiên hàm số không có GTLN.

Giải đáp câu hỏi và bài tập

Bài 1: Trang 18 - sgk giải tích 12

Áp dụng Quy tắc I, hãy tìm các điểm cực trị của các hàm số sau

a) $y=2x^{3}+3x^{2}-36x-10$.

b) $y=x^{4}+2x^{2}-3$.

c) $y=x+\frac{1}{x}$.

d) $y=x^{3}(1-x^{2})$.

e) $y=\sqrt{x^{2}-x+1}$

Bài 2: Trang 18 - sgk giải tích 12

Áp dụng quy tắc II, hãy tìm các điểm cực trị của các hàm số sau

a) $y=x^{4}-2x^{2}+1$;

b) $y=\sin 2x-x$;

c) $y=\sin x +\cos x$;

d) $y=x^{5}-x^{3}-2x+1$.

Bài 3: Trang 18 - sgk giải tích 12

Chứng minh rằng hàm số $y=\sqrt{|x|}$ không có đạo hàm tại x=0 nhưng vẫn đạt cực tiểu tại điểm đó.

Bài 4: Trang 18 - sgk giải tích 12

Chứng minh rằng với mọi giá trị của tham số m, hàm số $y=x^{3}-mx^{2}-2x+1$ luôn luôn có một điểm cực đại và một điểm cực tiểu.

Bài 5: Trang 18  - sgk giải tích 12

Tìm a và b để các cực trị của hàm số $$y=\frac{5}{3}a^{2}x^{3}+2ax^{2}-9x+b$$ đều là những số dương và $x_{0}=-\frac{5}{9}$ là điểm cực đại.

Bài 6: Trang 18 - sgk giải tích 12

Xác định giá trị của tham số m để hàm số $y=\frac{x^{2}+mx+1}{x+m}$ đạt cực đại tại $x=2$.

Phần trên, hocthoi.net đã soạn đầy đủ lý thuyết và bài tập của bài học: Soạn giải tích 12 bài 2: Cực trị của hàm số . Bài học nằm trong chuyên mục: Soạn giải tích lớp 12. Phần trình bày do Nguyễn Huyền chủ biên. Nếu có bài tập nào chưa rõ, có phần nào muốn hiểu rộng thêm, bạn đọc vui lòng comment bên dưới. Ban biên tập sẽ giải đáp giúp các bạn trong thời gian sớm nhất.

Bài soạn các môn khác

Bình luận