A. Tổng hợp kiến thức
- Bội chung nhỏ nhất của hai hay nhiều số là số nhỏ nhất khác 0 trong tập hợp các bội chung của các số đó.
Ví dụ:
Ta có: B(5) = { 0,5,10,15,20,...}
B(2) = { 0,2,4,6,8,10,12,...}
=> BC(2,5) = { 0,10,20,..}
=> BCNN(2,5) = 10.
Chú ý:
- Mọi số tự nhiên đều là bội của 1.
- Với mọi số tự nhiên a, b( khác 0 ), ta có : BCNN(a,1) = a , BCNN(a,b,1) = BCNN(a,b).
II. Cách tìm BCNN, BC
1. Tìm BCNN thông qua phân tích các số ra thừa số nguyên tố
Ví dụ:
Tìm BCNN(24,35) = ?
Hướng dẫn giải:
Ta có: $24=2.2.2.3=2^{3}.3$
$35=5.7$
Các thừa số chung và riêng với số mũ lớn nhất là : $2^{3}$, 3, 5, 7.
=> BCNN(24,35) = $2^{3}$. 3. 5. 7 = 840.
Chú ý:
- Nếu các số đã cho từng đôi một nguyên tố cùng nhau thì BCNN của chúng là tích của các số đó.
- Trong các số đã cho, nếu số lớn nhất là bội của các số còn lại thì BCNN của các số đã cho chính là số lớn nhất ấy.
2. Tìm BC thông qua tìm BCNN
- Để tìm bội chung của các số đã cho, ta có thể tìm các bội của BCNN của các số đó.
Ví dụ: Tìm BC(12,15) với điều kiện x < 100.
Hướng dẫn giải:
Ta có: BCNN(12,15) = 60
=> BC(12,15) = B(60) = { 0, 60, 120,...}
Mà theo đk bài toán: x < 100
=> BC(12,15) = { 0, 60 }.
Vậy BC(12,15) = { 0, 60 }.
Bình luận