Danh mục bài soạn

PHẦN ĐẠI SỐ

Chương III. Hệ phương trình bậc nhất hai ẩn

Chương IV. Hàm số y = $ax^{2}$ (a khác 0). Phương trình bậc hai một ẩn

PHẦN HÌNH HỌC

Chương III. Góc với đường tròn

Chương IV. Hình trụ- Hình nón- Hình cầu

Giải toán vnen 9 tập 2: Bài tập 3 trang 69

Bài tập 3: Trang 69 toán VNEN 9 tập 2

Cho parabol (P): $y = -x^2$ và đường thẳng $d:\; y = mx - 1$

a) Chứng minh với mọi giá trị của m thì đường thẳng d luôn cắt parabol (P) tại hai điểm phân biệt.

b) Gọi $x_1;\;x_2$ lần lượt là hoành độ giao điểm của đường thẳng d và parabol (P). Tìm giá trị của m để $x_1^2x_2+x_1x_2^2 - x_1x_2 = 3$

Cách làm cho bạn:

a) Chứng minh với mọi giá trị của m thì đường thẳng d luôn cắt parabol (P) tại hai điểm phân biệt.

$\Leftrightarrow $ Chứng minh phương trình hoành độ giao điểm của hai đồ thị luôn có hai nghiệm phân biệt với mọi giá trị của m.

Phương trình hoành độ giao điểm: $-x^2 = mx-1 \Leftrightarrow x^2 + mx -1 = 0$ (*)

$\Delta = m^2 - 4\times 1\times (-1) = m^2 + 4 \geq 0 \; \forall m$

Vậy với mọi giá trị của m thì (*) luôn có hai nghiệm phân biệt, hay d luôn cắt P tại hai điểm phân biệt.

b) Gọi $x_1;\;x_2$ lần lượt là hoành độ hai giao điểm của đường thẳng d với parabol P $\Rightarrow $ $x_1;\;x_2$ chính là nghiệm của phương trình (*).

Theo hệ thức Vi-et, ta có: $\left\{\begin{matrix}x_1+x_2 = -m\\ x_1\times x_2 = -1\end{matrix}\right.$

Ta có: $x_1^2x_2+x_1x_2^2 - x_1x_2 = x_1x_2(x_1+x_2)-x_1x_2 = -1(-m) - (-1) = m + 1$
Theo bài ra: $x_1^2x_2+x_1x_2^2 - x_1x_2 = 3$

$\Rightarrow m+1 = 3 \Leftrightarrow m = 2$

Xem các câu khác trong bài

Các bài soạn khác

Giải các môn học khác

Bình luận